紫外拉曼在探测金属中心合成物、富勒分子、联乙醯以及其他的稀有分子上也是一种重要的技术,这些材料对于可见光都有着很强的吸收,
在固体激光器中,一般以光作为泵浦源,能产生激光的晶体或玻璃被称为激光工作物质。激光工作物质由基质和激活离子两部分组成,基质材料为激活离子提供了一个合适的存在与工作环境,而由激活离子完成激光产生过程。常用的激活离子主要是过渡金属离子,如铬、钻、镍等离子以及稀土金属离子,如钕离子等。
点状激光头200 nm的激励光能够增强氨基化合物的振动峰;而220 nm的激励光则可以增强特定的芳香暂留物的振动峰等。小型化的光泵浦激光器具有很好的应用前景,可为量子光子学研究、体内细胞成像等应用生成相干光。但目前的纳米级光泵浦激光器不仅效率低,
按工作介质不同,激光器分为固体激光器、气体激光器、染料激光器、半导体激光器、光纤激光器和自由电子激光器6种。其中固体激光器和气体激光器还有很多细分种类。除自由电子激光器外,各种激光器的基本工作原理均相同,包括泵浦源、光学谐振腔和增益介质三部分。
点状激光头且大都需要短波如紫外线来激励,而一些非常规环境,如人体组织,非常容易受到紫外线和低效操作所产生的多余热量的伤害,因而无法使用此类激光器。传统氙灯光源由于内部充有超高压的气体,灯泡结构不稳定,
表面镀有介质膜的反射镜作为谐振腔镜片,其中一片为全反镜,一片为半反镜。当采用不同的激活离子、不同的基质材料和不同波长的光激励,会发射出各种不同波长的激光。
点状激光头容易破裂和爆炸。汞灯则存在长期的汞污染,因此需定期更换灯泡。激光光源结构可靠性高,不存在炸灯危险,并且寿命长的优点使得运营成本大大降低,基本无需维护。